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Abstract

We report on the analysis of data created by contact dynamic simulations to de-
termine the functional form of the distribution of normal forces and normal pressures
found in 2- and 3- dimensional random packings of granular media under uniaxial com-
pression, as well as the effect of the degree of polydispersity on the force distribution.
We observe that in 2D: the functional form of the tail of the force distribution is very
close to an exponetial and gets gets rapidly closer as polydispersity increases. It is also
found that greater polydispersity increases the standard deviation of the force distibu-
tion. The functional form of the pressure distribution’s tail is a gaussian and can be
fit to form axebx

2
. We observe that in 3D: the function form of the tail for force and

pressure is a streched exponential (aebx
α
) with α = 0.58 for force and α = 1.58 for

pressure.

1 Introduction

The most basic example of granular materials that can be considered is a static assembly
of spherical particles in contact and placed under uniaxial compression. We call this con-
figuration a packing. The system is under stress from the compressing force and so most
of the particles in this packing will experience forces between itself and other spheres with
which it is in contact. A small portion do not experience any force and hence are not
constrained and are free to move within a space. We refer to these particles as rattlers.
Since the packing is in equilibrium, the sum of the forces on each particle must equal zero.
Even in this ideal case, the distribution of the forces in the packing is complicated to predict.

A monodisperse packing of particles in 2-dimensions will result in a crystalline structure and
might imply a homogeneous force distribution (uniform load sharing amongst the grains).
But this assortment of perfect particles is clearly only a hypothetical situation and the slight-
est variation in size or shape of the particles, which will be present in any practical situation,
as well as the way in which they are packed, shall result in an inhomogeneous distribution of
force. This causes stresses to be transmitted throughout the packing via force chains which
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Figure 1: Force Chains in a 2 dimensional packing of spheres [2]

makes up a network of grains that share most of the stress from the applied load amongst a
small fraction of the overall grains [4]. An image of force chains in a two dimensional packing
is shown in figure 1.

Spatially inhomogeneous distribution of force and pressure amongst grains in a packing is
characteristic of granular media. Many 2D and 3D experiments have produced a prediction
of a functional form of the force and pressure distribution in polydisperse packings. Paper
by P. Tighe et al [3] used an entropy maximising procedure to derive an analytical solution
for the normal probability distribution of pressure in monodisperse, 2D packings:

ρ(p) = Z−1pν exp(−αp− γ 〈a(p)〉) (1)

They show that for a frictionless system, the term 〈a(p)〉 is quadratic and so the exponen-
tial term is gaussian. In the region of p > p̄ the exponential term in (1) becomes dominant
and so the function becomes gaussian in that region. It is said in this case that the distri-
bution has a gaussian tail. It is also possible to see that in the region p < p̄ the dominant
term is pν and so is characterised by a power law in this region. Tighe et al also makes a
prediction that in 3D monodisperse packings the functional form of the tail is; ρ(p) ∼ e−p

δ

where δ = 3/2 while noting that numerical solutions have found it to be δ ≈ 1.7± 0.1 This
is the form of a stretched exponential.

In paper Mueth et al. [4], the functional form of a 3D monodisperse packing was found
experimentally by measuring the force exerted on each constraining surface of the container,
in which the granular material was held, using a carbon paper technique [4]. This functional
form of the force distribution, in contrast to the functional form of the pressure distribution,
found by other numerics as mentioned in Tighe et al. [3] as well as their own analytical ex-
trapolations was also found to have a tail of the form of a stretched exponetial (e−p

δ
) where

δ was found to be in the range 1.0 < δ < 1.9, depending on the coefficient of friction for
the system, and to have a nearly uniform distribution below the mean force. The functional
form of the force distribution in 2D, however, has been found by experimental simulations
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in paper by Radjai et al. [5] to have an exponential decay ρ(f) ∼ e−f
δ

in the region p > p̄
with δ = 1 rather than a gaussian (δ = 2), as is the case for 2D pressure distribution [3],
while in the region p < p̄, the dominant term is found to obey a power law ρ(f) ∼ f ν .

2 Motivation and Aims

While many papers have revealed both analytical and experimental results which generally
agree it is possible to see shortcomings in some of the methods. Ideally, both numerical
and analytical agreement is required to accept a model. In lab orientated experiments like
Mueth et al. [4] it is impractial to determine the repulsive force between contacts. Instead
only forces due to contact with the containing surfaces are possible to calculate. Thus the
pressure distribution is impossible to determine by this method and so we must find an alter-
native way to see if numerics agree with the analytical solutions presented by Tighe et al. [3].

It is also notable that the effect of polydispersity on the functional form can not be ac-
curately determined in a lab orientated experiment as it is impractical to prepare a packing
of grains with gaussian distributed radii. It is the aim, therefore, of this paper to present a
numerical prediction of the functional form of the force and pressure distribution by analysing
contact dynamic simulations thereby making it possible to accurately determine pressures
and contact numbers, as well as enabling us to produce an ideal set of spheres of desired
dispersity. With many such packings we believe we can make accurate predictions of the
functional form of both pressure and force distribution and also determine the the effect
that polydispersity has on the force distribution, which, for the reasons above, has not been
explicitly tested before.

3 Methodology

In this paper we analysed data prepared by Cathal B. O’Donovan [2] in which packings
were simulated using two methods: The Bubble Mode Code and the Conjugate Gradient
Minimisation. The Bubble Mode Code protocol in 2D created 1500 discs (soft bubbles) in a
periodic box, with dimensions of unit 1, initially at a very low packing fraction φ. Periodic
boundary conditions were used. Their radii were slowly increased until a desired packing
fraction Φ was reached. There is no distortion of shape when an interaction between bubbles
occurs but instead a simple overlap in space is allowed, with energy created by the extent
of overlap between bubbles. The bubles are allowed to move freely, tending to minimise
the energy due to overlap, and the simulation was terminated when the energy reached a
steady state minimum. Several packings are made with several different packing fractions
for different gaussian polydispersities. Several data files were made containing the position,
in cartesian coordinates, and radii of each sphere.

We analysed five data sets:
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1. 2 Dimensional:

(a) Bi Dispersive; (bi) Standard Deviation ≈ 0.17 r̄

(b) Polydispersive; (g29) with a gaussian distribution of radii
Standard Deviation ≈ 0.29 r̄

(c) Polydispersive; (g25) with a gaussian distribution of radii
Standard Deviation ≈ 0.25 r̄

(d) Polydispersive; (g14) with a gaussian distribution of radii
Standard Deviation ≈ 0.14 r̄

2. 3 Dimensional:

(a) Monodispersive

Each 2D data set had 50 packings with approximately 15,000 spheres per packing, while
the 3D data set had 500 packings. Since we are dealing with a probability distribution a very
large number of data points were required to yield a decent prediction of the distribution.
This is especially important for the tail, as in all cases there seems to be a severe drop-off of
the probability density meaning that the tail contains fewer data points.

We wrote a script in Python to determine the force and pressure distribution from all the
packings in a given data set. The force between two contacts was determined using Hooke’s
law by calculating the overlap δ, as seen in figure 2.

Figure 2: Overlap between spheres gives contact force by hooke’s law F = −δk.

The pressure for each sphere, i, could then be found by summing over its contact forces
and dividing by its surface area

Pi =

∑
j F

Surface Areai

The data was non-dimensionalised and placed in bins of appropriate size to have a reduced
level of noise while having as many bins as possible. Bin size was increased where there was
a surplus of data points, making the shape graph easier to distinguish, and reduced in any
regions where a lesser amount of data points were analysed. Boundary conditions were also
taken into consideration. The code was elaborated for the 3D packings to account for the
extra cartesian coordinate and the boundary conditions were also modified appropriately.
The particles were assumed to be massless for all parts. The code was ran once for each
data group and the results were recorded for analysis.
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4 Results and Analysis

4.1 2D

Figure 3 shows an overplot of the force distribution and pressure distribution from the created
data. We can see in both cases that the peak is to the left of the mean force or pressure,
i.e. most of the grains experience a below average amount of force or pressure. It was also
found that 5-6% of spheres were rattlers (experiencing no force or pressure). From figure 3b,
we see that some spheres experience at least 4 times more pressure than the average. These
observations support the force chain model given in jounral by Tighe et al. [1] as seen in
figure 1 and confirms that most of the stresses are experienced by a minority of grains.

(a) Force density distributions. (b) Pressure density distributions.

Figure 3: Force and pressure densities distributions. Bin size 0.005

To determine the force and pressure distributions we predominantly consider the func-
tional form of the distributions in regions: f > f̄ for the force and p > p̄ for the pressure,
which can be referred to as the tail.

4.1.1 Force

Linear semilog plots, as seen in figures 4 and 5 verify an exponential functional form for the
force distribution in the region f > f̄ . A line was fitted to semilog plots of each data set,
with a trend of better fit for higher standard deviations. This may be seen by looking at the
extremes of the data, as seen in figure 5. Fits to all the data sets, with larger bin sizes can
be seen in figure 11 found in the appendix.

This does not necessarily imply that ploydispersity affects the functional form of force distri-
bution, since, if we consider figure 3a, we see that the peak for packings with higher standard
deviations are further from the mean. This implies that the force distribution is more spread.
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This can also be seen from figure 12, found in the appendix.

Figure 4: Overplot of the log of the force distribution vs. the force. All four data sets are
shown here. Bin size 0.005

(a) Linear fit to semilog of g14 data. (b) Linear fit to semilog of g29 data.

Figure 5: The extremes of data, plotted as log(ρ(f)) Vs. f , g29 has the highest standard
deviation of all the 2D data and g14 has the lowest. The bin size for these plots was set to
0.05.

A more diverse force distribution may imply that the shape is more representative of the
correct form, especially for the tail where there will be fewer data points for a less spread
distribution. However, we can see from figure 3a that in the region between 1f̂ and 2f̂ , g14
should have a slightly higher number of data points than g29 due to its higher probability
density in this region. So it would be expected that figure 6a would have a linear fit which
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is in as strong an agreement as figure 6b, but we can see that this is not the case and that
g29 still has a substantially better fit. This means that it is not the wider distribution of
data that causes a better linear fit with greater polydispersity, but that as polydispersity in-
creases, the functional form of the force distribution very rapidly approaches an exponential.

(a) Linear fit to semilog of g14 data. (b) Linear fit to semilog of g29 data.

Figure 6: The extremes of data plotted in the range 1f̂ and 2f̂ plotted as log(ρ(f)) Vs. f .
Bin size = 0.05

4.1.2 Pressure

Linear plots of the log of the pressure distribution vs. pressure squared, as seen in figure 7,
and figures 13 and 14 found in the appendix verify a gaussian functional form in the region
p > p̄.

All data sets had good linear fits. Slightly better fits are observed for lower polydisper-
sities, as can be seen from the extremes of the data in figure 7.

It appears that polydispersity has a less significant effect on the functional form of the
pressure distribution than it does on that of the force distribution. However, the results in
figures 7 and 14 suggest that the functional form diverges, very slowly, from a gaussian with
increasing polydispersity. A function that has a gaussian term that dominates in the region
p > p̂ can be fitted to the data as shown in figure 8.
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(a) Linear fit to semilog of g14 data pressure. (b) Linear fit to semilog of g29 data pressure.

Figure 7: The extremes of data, plotted as log(ρ(p)) Vs p2. Bin size = 0.01

Figure 8: Functional fit to g14 pressure distribution.

The exponent is quadratic, which is equivalent to a shifted gaussian. The x term will be
dominant in the region p < p̂. This is a power law with degree 1 and is of the form predicted
by Tighe et al [3] and by Radjai et al. [5]. Functional fits to all the data may be seen in
figure 15, found in the appendix.
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4.2 3D

(a) Force (b) Pressure

Figure 9: Probability distributions of force and pressure. Bin size = 0.05

Figure 9 shows the probability distribution for force and pressure for the 3D data set. A
linear fit to the tail of the log of the log of the probability distribution vs. log of the force
and of the pressure verifies a function form of a stretched exponential f(x) = ae−bx

α
, as seen

in figure 10 for the force and pressure distributions. It is of particlular interest to note that
αp ≈ αf + 1 as is also the case in 2D.

(a) Force (b) Pressure

Figure 10: log of the log of probability distribution vs. log of the force/pressure. Bin size =
0.05
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5 Conclusion

In 2D, the tail of the force distribution is characterised by a functional form that very rapidly
approaches an exponential with increasing polydispersity. A highly polydispersive packing
results in a a very good exponential fit. Greater polydispersities increases the standard
deviation of the force. It was found that the functional form of the tail of the pressure
distribution is gaussian in agreement with analytical prediction by Tighe et al. [3]. This
gives better fit for low polydispersities, therefore the function form of the tail approaches
gaussian for decreasing polydispersity. Using this information it was possible to make a fit
of the functional form, given by Tighe et al. [3], to the distribution. In 3D, the functional
form of the force and pressure distribution is a stretched exponential (f(x) = ae−bx

α
), with

α = 0.58 for force distribution and α = 1.58 for pressure distribution. It is of particular
interest to note that, similar to the 2D case, αp ≈ αf + 1. Analysis of more data sets with
both larger and smaller polydispersities would be required to more accurately determine the
effect of polydispersity on the functional form of the force and pressure distributions in 2D,
and would be the most natural continutation to this work.
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Appendix

(a) Bi dispersive. (b) g14

(c) g25 (d) g29

Figure 11: Log of the force distribution vs. force. Bin size = 0.05
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Figure 12: Affect of Standard Deviation of radii on Standard Deviation of Force

Figure 13: Overplot of the log of the probability distribution vs. the pressure squared. Bin
size = 0.01
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(a) Bi dispersive. (b) g14

(c) g25 (d) g29

Figure 14: Log of the pressure distribution vs. pressure squared. Bin size = 0.05
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(a) Bi dispersive. (b) g14

(c) g25 (d) g29

Figure 15: Function fit to pressure distributions.
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